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Abstract. In this paper we investigate in a systematic way the influence of polydispersity in the block
lengths on the phase behavior of AB-multiblock copolymer melts. As model system we take a polydisperse
multiblock copolymer for which both the A-blocks and the B-blocks satisfy a Schultz-Zimm distribution.
In the limit of low polydispersity the expressions for the vertex functions are clarified by using simple
physical arguments. For various values of the polydispersity the phase diagram is presented, which shows
that the region of stability of the bcc phase increases considerably with increasing polydispersity. The
strong dependence of the periodicity of the microstructure on the polydispersity and on the interaction
strength is presented.

PACS. 61.41.+e Polymers, elastomers, and plastics

1 Introduction

Heterogeneous polymer melts may undergo a phase tran-
sition driven by an unfavourable interaction between the
different monomer types. In homopolymer blends this
phase transition leads to a state where the system is sep-
arated into coexisting phases (macrophase separation). In
copolymer melts, on the other hand, monomers of dif-
ferent type are chemically connected within one chain.
These monomers cannot be separated over macroscopic
distances, and in order to reduce the number of un-
favourable interactions the system may undergo a tran-
sition to a microphase separated state, which is a locally
inhomogeneous state in which the concentration profiles
of the various monomer types are periodic functions of
space. In order to study microphase separation theoreti-
cally, the monodisperse diblock copolymer melt has served
as a model system [1–4]. However, many polymerization
techniques automatically lead to a certain degree of poly-
dispersity in the block lengths. Also, many industrially
important block copolymers, such as thermoplastic elas-
tomers, are highly polydisperse multiblock copolymers
(polydisperse not only in overall molecule length, but also
in block length). In [5], the influence of polydispersity on
the spinodal and its influence on the position q0 of the
minimum of the second order vertex was investigated for
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various architectures such as linear, combs and stars. The
aim of the present paper is to investigate systematically
the influence of polydispersity on the position of the phase
transition lines, the stability of the various microstruc-
tures, and the periodicity (note that in general the pa-
rameter q∗ determining the periodicity might differ from
q0; see for instance [6]). Also, we intend to provide some
physical insight in the complicated expressions for the ver-
tex functions of polydisperse multiblock copolymers. As
a model system we take a two-component polydisperse
AB-multiblock copolymer for which both the lengths of
the A-blocks, and the lengths of the B-blocks satisfy a
Schultz-Zimm distribution (to be defined in Sect. 2). This
distribution contains a free parameter that controls the de-
gree of polydispersity. The system will be studied in the
weak segregation regime, where the separation between
the A- and B-monomers is not complete. In the phase di-
agram this corresponds to the region in the vicinity of the
critical point. The calculations will be done in the mean-
field approximation, which is reasonable provided that the
block lengths are not too short [3]. The procedure consists
of deriving an expression for the Landau free energy, and
subsequently minimizing it with respect to the amplitude,
the period, and the type of the microstructure [1]. For
monodisperse melts the expression for the Landau free
energy was derived in [1]. In order to obtain the corre-
sponding expression for polydisperse melts, it was shown
in [7] that the ideal intra-chain correlation functions have
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to be averaged over the polydispersity, after which the
vertex functions can be calculated along the same lines
as in the monodisperse case. However, compared to the
monodisperse case, the fourth order vertex has an addi-
tional contribution, the so-called non-local term, which
was derived for the first time in [6] for the case of ran-
dom copolymers, and later on in its most general form
in [8–11]. In [12] the resulting expression for the Landau
free energy has been worked out in detail for a rather
broad class of linear polydisperse multiblock copolymers.
This class encompasses copolymer melts containing an ar-
bitrary number of monomer types. There are only 3 re-
strictions: the number of blocks per molecule is large; the
block lengths are independent of each other; and the or-
der of the different block types is governed by a first order
Markov process. The multiblock copolymer studied in this
paper belongs to this class, and so we can use the general
formulas derived in [12]. The expression for the free energy
obtained in this way is, however, rather complicated, and
in order to increase physical insight, we will study it in the
limit of low polydispersity. In the last section of this paper
we present several phase diagrams, revealing the influence
of the polydispersity.

2 Model

Consider an incompressible polydisperse multiblock
copolymer melt containing two segment types A and B.
The excluded volume v per segment, and the statistical
segment length a are assumed to be the same for both
segment types. By choosing the proper unit of length and
by redefining the segments, it is always possible to get

v1/3 =
a√
6

= 1. (1)

The (average) number Nb of blocks per molecule is large,
and in the calculations we take the limit Nb → ∞. The
block lengths, which are independent of each other, satisfy
the Schultz- Zimm distribution, which is defined by

pα(n) =
kkαα e−kαn/n̄αnkα−1

Γ (kα)n̄kαα
· (2)

pα(n) is the probability that a block of type α = A/B con-
tains n segments, n̄α ≡

∫
dnnpα(n) is the average number

of segments per block of type α, the parameter kα ≥ 0
controls the polydispersity of blocks of type α, and Γ (k)
is the Gamma function. A useful indication for the poly-
dispersity of a distribution is the value of the parameter
U ≥ 0, which is defined by

U =
(n− n̄)2

n̄2
=
nw

nn
− 1. (3)

nn = n̄ is the “number average length”, and nw = n̄2/n̄
is the “weight average length”. For the Schultz-Zimm
distribution one obtains

U =
1
k
· (4)

For k = 1, the Schultz-Zimm distribution reduces to the
exponential Flory distribution. In the literature, a multi-
block copolymer for which the block lengths satisfy a Flory
distribution is called a correlated random copolymer, and
its phase behavior has been considered in detail in [13–20].
In the limit k →∞ (i.e., U → 0) the distribution becomes
infinitely narrow. This corresponds to regular, monodis-
perse multiblock copolymers. In Figure 1 the distribution
has been plotted for various values of k.

3 Theory

The coarse grained state of an AB-copolymer melt is de-
scribed by the concentration profile ψ(x), which is the
deviation of the local fraction of A-monomers from the
average value:

ψ(x) = ρA(x) − f. (5)

In mean-field Landau theory [22] the free energy can be
expanded in powers of the Fourier transform ψ(q) of the
concentration profile:

FLandau =
4∑

n=2

1
n!

1
(2π)3n

×
∫

dq1...dqnΓn(q1, ...,qn)ψ(−q1)...ψ(−qn). (6)

The coefficients in this expansion are called “vertex func-
tions”. For these vertex functions, closed expressions can
be found in terms of the composition of the system; see
for instance [8,10–12]. If the number of molecule types
exceeds the number of monomer types, the fourth order
vertex has a non-local contribution Γ nl

4 [6,8–10], whose
representation in real space has the form

Γ4(x1, ...,x4) =

Γ loc
4 (x1, ...,x4) +

1
V
Γ nl

4 (x1 − x2,x3 − x4) + ... (7)

The dots represent the remaining two different terms ob-
tained by permuting x1, ...,x4 in Γ nl

4 . The vertex Γ nl
4 (x1−

x2,x3−x4) is non-local in the sense that its value is inde-
pendent of the distance between 1

2 (x1+x2) and 1
2 (x3+x4),

thus coupling points in space that are arbitrarily far apart.
In mean-field theory the phase diagram can be constructed
by minimizing the Landau free energy equation (6) with
respect to the (periodic) concentration profile ψ(x). In the
weak segregation regime (i.e., close to the critical point)
the profile is dominated by a single wave vector q∗, and it
is justified to make the first harmonic approximation by
neglecting the contributions from other wave vectors. In
this case the expression for ψ(q) becomes [1]

ψ(q) =
AV√
m

∗∑
Q

eiφQδK(q−Q) (8)
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Fig. 1. The Schultz-Zimm distribution for various values of the inverse polydispersity k. Horizontal axis: block length n. Vertical
axis: probability density.

where the summation extends over reciprocal lattice vec-
tors, and the star indicates that the summation is re-
stricted to those vectors belonging to the first harmonic
sphere; m is half the number of such vectors. A is the
amplitude, and φQ is the phase associated with Q. The
common length q∗ of the vectors Q is approximately equal
to the position q0 of the minimum of the second order
vertex function.

4 The vertex functions in the limit of small
polydispersity

4.1 Composition fluctuations in the chains

The expressions for the vertex functions can be obtained
by straightforward substitution of equation (2) for the
block length distribution into the equations derived in
[12]. However, the resulting expressions are rather compli-
cated, and in order to gain some physical insight we will
study them first for the special cases k = ∞ (monodis-
perse multiblock copolymers), and k = 1 (correlated ran-
dom copolymers). Generally, the second order vertex γ2(q)
defined by

Γ2(q1,q2) = V δK(q1 + q2)γ2(q1) (9)

has a contribution ≈ q2 due to the random walk nature
of the chain [23] (δK is the Kronecker delta). This con-
tribution becomes important for large values of q, corre-
sponding to small length scales. At small length scales the
system does not “know” that the A- and B-monomers are

connected, and so the q2-contribution has to be indepen-
dent of the average block length and the polydispersity.
Another important contribution to γ2(q) is long-ranged
(small q-values), and is a consequence of the connectiv-
ity between the A- and B-blocks. Its form can be derived
qualitatively as follows. Consider concentration fluctua-
tions with a given amplitude A, and a large period D.
The creation of such fluctuations by stretching individ-
ual blocks would cost too much entropy. Therefore, the
system uses effective blocks [24,25]; that is, long pieces
of chain containing a (large) number of A- and B-blocks.
The composition of these pieces may differ from the over-
all composition, even for monodisperse multiblock copoly-
mers, and by rearranging them spatially it is possible to
create the desired concentration fluctuation. For monodis-
perse multiblock copolymers, the composition fluctuation
∆f among effective blocks of length N scales like

∆f ∝ n̄

N
n̄ ≡ n̄A + n̄B. (10)

In principle, the system prefers to use long effective blocks,
since this gives rise to smaller entropy penalties. How-
ever, in order to create a profile with given amplitude A,
the composition fluctuation ∆f should at least equal A,
leading to an upper bound N∗ for the length N of the
effective blocks:

N ≤ N∗ ≈
n̄

A
· (11)

The free energy penalty for stretching an effective block
of length N∗ over a distance D is ∆F = D2/N∗ (random
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walk statistics). Therefore, the free energy penalty per unit
volume to create a profile with amplitude A and period D
is

∆F ≈ D2

N2
∗
≈ A2

n̄2q2
· (12)

From the quadratic dependence on A one concludes that
this leads to a contribution 1/n̄2q2 to the second order
vertex. Finally, there is a q-independent contribution to
γ2. Combining all terms, we obtain

γ2(q) = c+ q2 +
1

n̄2q2
(13)

which is in accordance with rigorous calculations [1]. For
the correlated random copolymer (characterized by k =
1), the situation is different. In order to find the long-range
contribution to the free energy, the same reasoning applies
as for the monodisperse case: in order to create large- scale
fluctuations with given amplitude A, the system makes use
of effective blocks. However, due to the polydisperse block
length distribution, the composition variation ∆f among
effective blocks of length N has a different dependence on
N as compared with equation (10)

∆f ∝
√
n̄

N
· (14)

Following the same line of reasoning as before, one arrives
at:

∆F ∝ A4

n̄2q2
· (15)

Since this is quartic in A, it gives rise to a contribution
1/n̄2q2 to the fourth order vertex. Rigorous calculations
show not only that it indeed exists [6] (it is part of the
non-local term Eq. (7)), but also that it is the dominant
contribution to the fourth order vertex. It follows that the
second order vertex is simply given by

γ2(q) = c+ q2 (16)

which is consistent with rigorous calculations as well [6].
Summarizing we can say that these qualitative arguments
suggest that the 1/n̄2q2 contribution to the second or-
der vertex of monodisperse multiblock copolymers has
the same physical origin as the 1/n̄2q2 contribution to
the fourth order vertex of correlated random copolymers.
The question arises where this contribution is present in
case the polydispersity lies in between these two extremes.
If the polydispersity is small but non-zero, correspond-
ing to 1 � k < ∞, then short pieces of chain are simi-
lar to short pieces of monodisperse chains, whereas long
pieces of chain are essentially polydisperse. Therefore, it
is to be expected that on large length scales (small q) the
vertex functions resemble those of the correlated random
copolymer, whereas on small length scales (large q), they
resemble those of the monodisperse multiblock copoly-
mer. It follows that there should exist a critical value qc

for q at which the 1/n̄2q2 contribution “jumps” from the
fourth order vertex to the second order vertex on increas-
ing q. An estimate for qc can be obtained by studying the
chain composition statistics. For symmetric chains (i.e.
f = 1/2) one can show that the distribution of the num-
ber NA of segments of type A present in a piece of chain
containing in total N segments satisfies the relation (see
Appendix A)

〈N2
A〉 − 〈NA〉2
〈NA〉2

=
n̄

2kN
+

(k2 − 4)
24k2

n̄2

N2
+ ... (17)

where the dots represent terms which vanish exponen-
tially with increasing value of N . Since k is assumed to
be large (small polydispersity), equation (17) reduces to
equation (10) if N � kn̄, while it reduces to equation (14)
with renormalized block length n∗ = n̄/k if N � kn̄. In
words: pieces of chain containing less than k blocks are
essentially monodisperse, while pieces of chain containing
more than k blocks are essentially polydisperse. Let Rc

be the radius of gyration of a coil containing k blocks.
Then the aforementioned critical value qc is expected to
be given by

qc = 1/Rc ≈ 1/
√
n̄k. (18)

In terms of the rescaled wave vector y ≡ n̄q2, the critical
value is given by yc = k−1. In the next section it is shown
that at y = yc the 1/n̄2q2 contribution jumps from the
fourth order vertex to the second order vertex, in accor-
dance with our qualitative picture.

4.2 The second order vertex

In this section we study the second order vertex function
γ2 for slightly polydisperse multiblock copolymers (k � 1)
in order to test the intuitive idea developed in the previous
section. For polydisperse AB-multiblock copolymers the
expression for γ2 is given by [12]

γ2(q) =
1

2n̄

[
f(1− f)
n̄x

− (1− p̂A(x))(1− p̂B(x))
(1− p̂A(x)p̂B(x))n̄2x2

]−1

x =
1
6
a2q2 = q2 (19)

where p̂α(x) is the Laplace transform of the block length
distribution pα(n):

p̂α(x) =
∫ ∞

0

dne−nxpα(n). (20)

For convenience, we define the rescaled wave vector ỹ ≡
ky = kn̄q2. Note that in terms of ỹ the critical wave vector
value is given by ỹc = 1. If we take for pα(n) the Schultz-
Zimm distribution, then for ỹ ∝ 1 and small polydispersity
(large k), the second order vertex equation (19) becomes

nγ2(q) ∼= 8k
(1 + ỹ/12)

· (21)

For ỹ � 1 equation (21) reduces to γ2 ≈ 1/n̄2q2, while for
ỹ � 1 the 1/n̄2q2 contribution disappears, as anticipated.
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4.3 The non-local term

Next consider the non-local term Γ nl
4 , that, in Fourier rep-

resentation, can be written as

Γ nl
4 (q1,q2,q3,q4) =

V δK(q1 + q2)δK(q3 + q4)γnl
4 (q1, q3) + ... (22)

where the dots represent the two remaining terms ob-
tained by permuting q1, ..., q4. The general expression for
γnl

4 (q1, q2) is rather complicated [12]. However, in the first
harmonic approximation one needs it only for q1 = q2, and
for ỹ ∝ 1, and k � 1 it simplifies to

n̄γnl
4 (q, q) =

128k3

ỹ(1 + ỹ/12)4
· (23)

Again, there is a change in behavior at ỹ = 1. For ỹ � 1
equation (23) simplifies to

γnl
4 (q, q) =

128k2

n̄2q2
(24)

which coincides, regarding its dependence on q, k and n̄,
with the expression for the non-local term for a correlated
random copolymer with average block length n∗ = n̄/k.
For ỹ � 1 the non-local term vanishes quickly as γnl

4 ∝
1/ỹ5.

Equation (23) brings forward another interesting fea-
ture of the non-local term, concerning its way of conver-
gence in the limit k →∞. It is well known that the non-
local term is absent for monodisperse copolymers, i.e.

lim
k→∞

γnl
4 (k, q1, q2) = 0. (25)

However, it follows from equation (23) that this conver-
gence is non-uniform: expressed in terms of the rescaled
wave vector ỹ the non-local term diverges for k →∞. The
reason for this can be understood in the following way. Let
system 1 be characterized by polydispersity k−1

1 , and let
system 2 be characterized by polydispersity k−1

2 < k−1
1 .

Pick from both systems a chain, and consider from both
chains a piece with length N � k2n̄. Both pieces are poly-
disperse in the sense defined earlier (i.e. with respect to
the dependence of ∆f on N), and so in both systems the
1/q2-term contributes to the fourth order vertex on length
scales R ∝

√
N �

√
k2n̄. However, since the chains in sys-

tem 2 have smaller composition fluctuations than those in
system 1, it is more difficult to create concentration fluc-
tuations in system 2 than it is in system 1. Therefore, for
q � 1/

√
k2n̄ ⇔ ỹ � 1 the non-local term for system 2

must be larger than the non-local term for the more poly-
disperse system 1, despite equation (25).

5 The influence of polydispersity
on the phase behavior

5.1 Phase diagrams

In this section we present and discuss the phase diagrams
of the polydisperse multiblock copolymers defined in Sec-
tion 3. The phase diagrams were calculated in the limit

0.0 0.5 1.0
0

1

2

3

k

 f

q0 0>

q0 0=

Fig. 2. The line of Lifshitz points. The parameter q0 is the po-
sition of the minimum of the second order vertex. Horizontal
axis: A-monomer fraction f . Vertical axis: inverse polydisper-
sity k.

Nb → ∞ (Nb is the number of blocks per chain). As
was shown in [26], the phase diagram for monodisperse
multiblock copolymers converges rapidly if the number of
blocks increases: once the number of blocks per chain is
10 or larger, the phase diagram is indistinguishable from
the limiting one. It is reasonable to assume that the same
is true for the polydisperse multiblock copolymers con-
sidered in this paper. Due to the polydispersity, the sys-
tem can in principle macrophase separate into coexisting
phases, each of which may be microphase separated. For
correlated random copolymers these 2-phase regions were
calculated in [17,18], and in [21] the conditions for phase
coexistence were derived rigorously for general multiblock
copolymers. However, the arising of such a macrophase
separated state requires the diffusion of chains as a whole,
which is slowed down exponentially if the number of blocks
per chain is large [27]. Therefore, in experimental situa-
tions the system will remain in a 1-phase state, even if this
state is metastable. For this reason the phase diagrams in
this paper were constructed under the assumption that the
melt remains in a single phase. The aim of this section is to
study the influence of polydispersity in the block lengths
on the stability of the various structures, and on the peri-
odicity. An important feature is the position q0 of the min-
imum of the second order vertex function. For small values
of the polydispersity the contribution 1/n̄2q2 is present for
small enough q-values to ensure that q0 > 0. For large val-
ues of the polydispersity, however, this contribution van-
ishes too soon for decreasing value of q, leading to q0 = 0.
The Lifshitz points (a Lifshitz point is a set of parame-
ter values for which q0 changes from zero to a non-zero
value) in the (f, k)-plane (f is composition, k is the in-
verse polydispersity) can be found by solving the equation

dγ2(y)
dy

= 0 y ≡ 1
6
n̄a2q2 = n̄q2. (26)

Using equation (19), straightforward calculation shows
that the Lifshitz points form a line given by the equation

1 + 12f − 12f2 − k2 = 0. (27)

The location of this line in the (f, k)-plane is shown in
Figure 2. It is important to note that even if q0 = 0,
the system will undergo a transition to a microphase
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Fig. 3. Mean-field phase diagrams for various values of the inverse polydispersity k. The lower line separates the disordered
phase from the BCC phase, the middle line separates the BCC phase from the hexagonal phase, and the upper line separates
the hexagonal phase from the lamellar phase. Horizontal: A-monomer fraction f . Vertical axis: product of the Flory-Huggins
χ-parameter with the number average total block length n = nA + nB .

separated state [6] due to the presence of the 1/n̄2q2-
contribution to the fourth order term (non-local contri-
bution). For the situation where the length distribution
of the A-blocks is the same as that of the B-blocks,
Figure 3 shows weak segregation regime mean-field
phase diagrams for various values of the polydispersity
U = k−1. Figure 4 shows what happens when the
length distribution of the A-blocks is monodisperse,
while that of the B-blocks is highly polydisperse. These
phase diagrams were calculated in the first harmonic
approximation by numerically minimizing the Landau
free energy with respect to the amplitude and the period
of the microstructure. Along the vertical axis we have
the product of the χ-parameter with the average total
block length n̄ = n̄A + n̄B (number average). There are
several trends visible when the polydispersity is increased.

For instance, the phase transition line shifts down, which
seems to indicate that polydispersity destabilizes the
homogeneous state. However, this conclusion is not really
meaningful, because the vertical axes of the graphs are
arbitrary: instead of the number average n̄, we could
have chosen any other measure for the block length as
a prefactor, for instance the harmonic average of the
block lengths, the weight average, etc. The direction of
the shift of the phase transition line on changing the
polydispersity depends on the type of average taken. A
real existing trend, however, is the drastic increase in the
size of the region of stability of the bcc-phase with respect
to that of the hexagonal phase. This increase is related
to the fact that for monodisperse copolymers the phase
boundaries are smooth at the critical point, while for poly-
disperse copolymers the phase boundaries have a kink.
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5.2 The influence of polydispersity on the period

Consider a symmetric polydisperse multiblock copoly-
mer. Changing the polydispersity while keeping the av-
erage block length fixed, the period of the microstructure
changes considerably. It is known that for monodisperse
multiblock copolymers the period is of the same order of
magnitude as the radius of gyration of the blocks, and that
it increases slightly on increasing the segregation. For cor-
related random copolymers, on the other hand, the period
is infinite at the spinodal, and decreases sharply with in-
creasing segregation [6]. In the weak segregation regime
the period is much larger than the average radius of gy-
ration of the blocks. This is because the microstructure is
constructed from “effective blocks”, [24,25] each consist-
ing of a large number of A- and B-blocks. As the segrega-
tion strength increases, the system wants to increase the
separation between the A- and B-monomers. Since short
pieces of chain have larger composition fluctuations than
long pieces of chain, the system has to use shorter effective
blocks in order to increase the separation, which leads to
a shorter period. Figure 5 shows, for f = 1/2, how the
period changes with the interaction strength for various
values of the polydispersity.

6 Summary

We studied theoretically the influence of polydispersity in
block length on the phase behavior of binary multiblock
copolymer melts. For the reasonable case of Schultz-Zimm
block molecular weight distributions, we presented the ex-
pressions for the vertex functions, and provided simple
physical arguments to explain these expressions qualita-
tively. We predict a dramatic increase of the region of
stability of the bcc phase with increasing polydispersity,
which is related to the fact that for non-zero polydisper-
sity the phase boundaries have a kink at the critical point.
In order to confirm our mean-field predictions experimen-
tally, it should be kept in mind that since polydispersity
enhances the influence of fluctuations, one has to study
multiblock copolymers with sufficiently long average block
length.

7 Outlook

The analysis presented here can be extended in several
ways. The phase diagrams in Figure 3 could be improved
by taking into account the effect of higher harmonics [2].
This might lead to interesting results because the higher
harmonics stabilize complex phases like the gyroid phase,
while in the first harmonic approximation one can only
predict regions of stability of the classical structures lamel-
lar, hexagonal and bcc. The polydispersity might have a
large influence on the stability of these complex struc-
tures (according to Fig. 3 it has a large influence on the
stability of the bcc-phase). Another extension is to calcu-
late the weak segregation phase diagrams for multiblock
copolymers consisting of more than two monomer types.
It was shown in [12] that close to the spinodal the coarse
grained state of such multi-component systems can still be
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Fig. 4. Mean-field phase diagram for the situation where
the A-blocks are highly polydisperse, while the B-blocks are
monodisperse. Horizontal: A-monomer fraction f . Vertical
axis: product of the Flory-Huggins χ-parameter with the num-
ber average total block length n = nA + nB .
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Fig. 5. The dependence of the periodicity D = 2π/q∗ on the
polydispersity and on the interaction strength. Horizontal axis:
the rescaled distance to the spinodal (n = nA + nB is the
number average block length, and χs is the spinodal value of
χ). Vertical axis: rescaled q-vector.

described by means of just one order parameter field, and
so the weak segregation phase diagram can be calculated
along the same lines as for the 2-component case.

We wish to thank Prof. I.Ya. Erukhimovich for many useful
discussions.

Appendix A

In this appendix an expression is derived for the compo-
sition fluctuation ∆f in pieces of chain as a function of
their length N , where ∆f is defined by

∆f =
〈N2

A〉 − 〈NA〉2
〈NA〉2

· (A.1)

NA is the number of A-segments among the total number
of N segments, and the brackets denote an average over
one infinite chain. There are several possibilities for the
state ω of this piece of chain: it could consist entirely of
A-monomers, or it starts with an A-block, ends with a
B-block, with any number of blocks in between, etc. Let
P (N,ω) denote the probability to find the state ω, and
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NA(ω) the number of A-segments corresponding to the
state ω. Define the generating functional W by

W (N, z) =
∑
ω

ezNA(ω)P (N,ω) (A.2)

then the averages 〈N i
A〉 can be obtained by (repeated)

differentiation of W , after which the averages 〈N i
B〉 follow

from NB = N −NA. The summation over ω can be split
into 6 subsummations. As an example we consider the
subsummation over all ω which start and end with an A-
block, with (t − 2) ≥ 0 A-blocks and (t − 1) B-blocks
in between. The corresponding subset of Ω is denoted by
ΩAA. Let ni be the number of segments in the ith A-block,
and mi the number of segments in the ith B-block, then
the probability P (N,ω) is given by

ezNA(ω)P (N,ω) =
1

nA + nB

×
∫ ∞
n1

pA(x)dxpB(m1)pA(n2)pB(m2)...pA(nt−1)pB(nt−1)

×
∫ ∞
nt

pA(y)dy exp[z(n1 + ...+ nt)]

× δD(n1+m1+n2+m2+...+mt−1+nt−N). (A.3)

Due to the Dirac delta function, the integrals over ni and
mi (which arise in the summation over ω in Eq. (A.2)) are
coupled. They can be decoupled by performing a Laplace
transformation with respect to the variable N , leading to∑
ω∈ΩAA

ezNA(ω)P̂ (s, ω) =
1

nA + nB

×
∞∑
t=2

Q̂2
A(s− z)p̂t−2

A (s− z)p̂t−1
B (s)

=
1

nA + nB

Q̂2
A(s− z)p̂B(s)

1− pA(s− z)pB(s)

Qα(n) =
∫ ∞
n

pα(x)dx Q̂α(s) =
1− p̂α(s)

s
· (A.4)

The summations over ΩAB , ΩBA and ΩBB can be han-
dled in the same way. There remain the subsets Ωα, each
consisting of only one state ω in which all segments are of
type α. The probability of this state is

Pα(N,ω) =
1

(nA + nB)

∫ ∞
N

dn(n−N)pα(n). (A.5)

Therefore,∑
ω∈ΩA

ezNA(ω)P̂ (s, ω) =
p̂A(s− z)− 1 + (s− z)nA

(s− z)2
·

(A.6)

Adding all contributions, and filling in the Schultz-Zimm
distribution

pα(n) =
kke−kn/n̄αnk−1

Γ (k)n̄kα
⇔ pα(s) =

1(
1 + n̄αs

k

)k (A.7)

one obtains finally, after differentiation with respect to z
followed by an inverse Laplace transformation

〈N2
A〉 − 〈NA〉2
〈NA〉2

=
2(1− f)2n̄

kN

+
(1− f)2(−1− 12f + 12f2 + k2)n̄2

6k2N2
+ ...

(A.8)

where the dots denote terms which vanish exponentially
with N . Note that a Lifshitz point occurs when the second
term on the right hand side vanishes (see Eq. (27) and
Fig. 2).
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